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It is predicted that large and opposite generalized Goos-Hänchen(GGH) shifts may occur simultaneously for
TE and TM light beams upon reflection from an asymmetric double-prism configuration when the angle of
incidence is below but near the critical angle for total reflection, which may lead to interesting applications in
optical devices and integrated optics. Numerical simulations show that the magnitude of the GGH shift can be
of the order of beam’s width.
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It is well established that a light beam that is totally re-
flected from a dielectric interface undergoes a lateral shift
from the position predicted by geometrical optics. This phe-
nomenon is known as the Goos-Hänchen(GH) effect [1,2]
and was theoretically explained first by Artmann[3]. The GH
shift depends on the polarization state of the beam[4–7] and
its magnitude for incidence angles close to the critical angle
for total reflection is about the order of the wavelength. The
smallness of the shift for optical wavelengths has impeded its
direct measurement in a single-reflection experiment[7,8].
Since the investigation of the GH shift has been extended to
frustrated total internal reflection[5,9–12] and partial reflec-
tion [13–19] and to other areas of physics[4], such as acous-
tics [20], nonlinear optics[21,22], surface physics[23], and
quantum mechanics, attention has been paid to the mecha-
nism for enlarging its magnitude[13,15,18,24–32].

It was predicted that the GH shift can be enhanced by
resonance by an order or more for TE polarization in spa-
tially dispersive semiconductors[30] or for TM polarization
in cesium vapor[31]. In this paper we report that large and
opposite GH shifts may occur simultaneously for TE and TM
light beams upon reflection from an asymmetric double-
prism configuration when the angle of incidence is below but
near the critical angle for total refection, which may have
interesting applications in optical devices and integrated op-
tics. These large GH shifts are in connection with transmis-
sion resonances in much the same way as in a total internal
reflection configuration[32]. Numerical simulations show
that the magnitude of the GH shift is about the order of
beam’s width at transmission resonances.

Historically, the phenomenon of the GH shift[1,2] in-
volves the evanescent wave in an optically thinner medium.
But the beam shift discussed in this paper has nothing to do
with the evanescent wave. So we term it as generalized GH
(GGH) shift for the rest of the paper, since it keeps the main
features of the GH shift, that is to say, it is due to the finite
width of the light beam and is different from the prediction
of geometrical optics.

The asymmetric double-prism configuration considered
here is shown in Fig. 1, where two prisms of refractive indi-
cesnu andns are placed adjacently with a thin dielectric layer
of refractive indexnl and thicknessa being formed in be-
tween them, so thatnu,ns.nl. Our discussions are in two
dimensions. A light beam of wavelengthl and angular fre-
quencyv is incident from lower left at incidence angleu0
that is assumed to be less than the critical angle,uc
=sin−1snl /nud, for total reflection. Let cinsxWd
=AskydexpsikWu·xWd be the electric(or magnetic) field of the
Fourier angular spectrum of the incident TE(or TM) beam,
where time dependence exps−ivtd is implied and suppressed,

kWu;skux,kyd=sku cosuu,kusin uud, ku=nuk0, k0=2p /l is the
wave number in the vacuum, anduu is the incidence angle of
the plane-wave component under consideration,Askyd is the
amplitude angular-spectrum distribution. Combining Max-
well’s equations and boundary conditions yields the electric
(or magnetic) fields of corresponding Fourier angular spec-
trum crsxWd=rskydAskydexp fis−kuxx+kyydg for reflected beam,
and ctsxWd= tskydAskydexpfiksxsx−ad+ ikyyg for transmitted
beam, whererskyd is the amplitude reflection coefficient
rskyd=g1 exps−if1d / fg0 exps−if0dg, tskyd is the amplitude
transmission coefficienttskyd=1/fg0 exps−if0dg, g0 and f0

are defined by
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FIG. 1. Schematic diagram of the GGH shift in asymmetric

double-prism configuration.
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h j = Hnj cosu j , for TE,

cosu j/nj , for TM, j = u,l,s,

u j is determined by Snell’s law,nj sin u j =nu sin uu, kjx
=njk0 cosu j.

It is noted thatf0−f1 is the phase of reflection coeffi-
cient, andf0 itself is the phase of transmission coefficient.
The GGH shift of reflected beam from the position predicted
by geometrical optics as is shown in Fig. 1 is, according to
stationary-phase theory[3,5,10], sr =−dsf0−f1d /dkyuuu=u0

.
The GGH shift of transmitted beam which is defined[18] as
the lateral displacement of the peak of the transmitted beam
at the second layer/prism interface from the peak of the in-
cident beam at the first prism/layer interface is given by,
according to stationary-phase theory,
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Substitutingf1 defined in Eq.s2d and noticing Eq.s3d, we
finally get sr =st+s0 for the GGH shift of reflected beam,
where

s0 =
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Since the power reflectanceR satisfiesR=g1
2/g0

2ø1, we see
that g1

2øg0
2. In fact, we have from Eq.s2d that
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g1
2 can be very small and even be equal to zero under certain

conditions. So let us look carefully ats0, which will domi-
natesr wheng1

2 is very small.

First of all, when the incidence angle of the beam is near
the critical angleuc in the asymmetric configurations1
−hs/huÞ0d, s0 will be dominated by its first part,

s0 < −
a
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Second, becausehl →0 near the critical angle,g1
2 reaches its

minima s1/4ds1−hs/hud2 at klxa=mpsm=1,2,3, . . .d. This
means that the maxima ofs0 near the critical angle are

s0max< −Uhs/hl − hl/hu

1 − hs/hu
a tan ulU

uu<uc

,

which is very large in thathl →0 and ul →p /2 near the
critical angle. At last, it is noted that near the critical angle,
hs/hl −hl /hu is positive, but the sign of 1−hs/hu depends on
the polarization of the beam for a definite double-prism
structure, that is, for definitenu and ns. For instance, if
nu.ns, 1−hs/hu.0 for TE polarization and 1−hs/hu,0
for TM polarizationsit should be kept in mind that the inci-
dence angle of the beam is assumed to be always below the
critical angled. On the other hand, ifnu,ns, then 1
−hs/hu,0 for TE polarization and 1−hs/hu.0 for TM
polarization. Thus it is clear that the reflection GGH shift of
TE beam is opposite to that of TM beam near the critical
angle. In Fig. 2 is shown the dependence of the GGH shiftsr
on the incidence angle of the beam, wherenu=1.56, nl =1
sthe critical angleuc=sin−1s1/1.56d<39.87°d, ns=2.22, the
thickness of the layera=3l, the TE beam is shown by
solid curve, and the TM beam is shown by dotted curve.
All the physical quantities that have length dimension,
such as the GGH shift, the thickness of the thin layer and
the width of the beam are in units of wavelength in this
paper. It is shown that the GGH shift is very large and is

FIG. 2. Dependence of theoretical GGH shifts for reflected TE
and TM beams on the angle of incidence, wherenu=1.56, nl =1,
ns=2.22,a=3l, the TE beam is shown by solid curve, and the TM
beam is shown by dotted curve.
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positive for TE beam and negative for TM beam atu0
=39.2°.

When the incidence angle is near the critical angle, the
reflectance is minimal atklxa=mp as readers easily verify.
This minimum is equal toRmin=s1−hs/hud2/ s1+hs/hud2. So
the power transmission reaches its maximumTmax=1−Rmin
=s4hs/hud / s1+hs/hud2 at klxa=mp. This shows that the
GGH shift of reflected beam is greatly enhanced by trans-
mission resonance in much the same way as in a total inter-
nal reflection configuration[32].

Now that the peaks of the GGH shift of reflected beam are
determined byklxa=mp, the angular distanceDu0 between
two adjacent peaks for a givena is determined byuDklxua
=p, which givesDu0=p /kuxa tan ul. In order to retain the
profile of the beam in reflection, it is required thatDu0 be
much larger than the divergence of the beam,du
,l /nupw0, wherew0 is the width of the beam. As a result,
for a beam of given width, the thickness of the layer between
the two prisms is required to satisfy

a ! a0 ; pw0/2 cosuu tan ul ,
pw0

2

cosul

cosuu

near the critical angle. This means that the restrictions
adopted by Steinberg and Chiao in Ref.f10g fe.g., in the
discussions around their equationss34d–s39dg are sufficient,
but not necessary, to ensure that the stationary-phase method
is valid.

To show the validity of the above stationary-phase analy-
sis, we have made numerical simulations in which the inci-
dent beam is assumed to be of Gaussian profile,

cinsxWdux=0 =
1

Î2p
E

−`

+`

Askydexpsikyyddky, s7d

where the amplitude angular-spectrum distribution is Gauss-
ian, Askyd=wy exp f−swy

2/2dsky−ky0d2g, ky0=ku sin u0, wy

=w0 secu0. Consequently, the field of reflected beam has
the following form,

crsxWd =
1

Î2p
E

−`

+`

rskydAskydexps− ikuxx + ikyyddky. s8d

The integral from −̀ to +` in Eq. s7d guarantees that the
field of the incident beam has a perfect Gaussian profile with
respect toy. But for a real incident beam, the incidence
angles of its angular-spectrum components extend from
−p /2 to p /2. So the integral in Eq.s8d in numerical simu-
lations is performed from −ku to ku,

c r
NsxWd =

1
Î2p

E
−ku

ku

rskydAskydexps− ikuxx + ikyyddky.

The numerically calculated GGH shiftsr
N of reflected beam

is defined byuc r
Nsx=0,sr

Ndu=max uc r
Nsx=0,ydu.

In Fig. 3 we draw the dependence of numerically calcu-
lated GGH shifts for reflected TE beams on the thickness of
the layer in comparison with the result of theoretical analysis
(solid curve), where two different widths of the beam are
involved, w0=117l (corresponding to beam’s divergence

du=0.1° and being shown by dashed curve), and w0
=1170l (corresponding to beam’s divergencedu=0.01° and
being shown by dotted curve), the angle of incidence is cho-
sen to beu0=39.2°, all other parameters are as in Fig. 2. It
should be pointed out that the discrepancy between theoret-
ical and numerical results is due to the distortion of the re-
flected beam, especially when the width of the beam is nar-
row. So the wider the incident beam is, the lesser the
reflected beam is distorted, and the closer to the theoretical
result the numerical result is. The peak of the numerical shift
at a=3l is about 194.1l for w0=117l. And it is about
383.3l for w0=1170l, which is almost equal to the theoret-
ical result 403.4l. This shows that the magnitude of the
GGH shift at transmission resonance is over 100 times of the
wavelength and is of the order of beam’s width.

According to Eq.(3), the GGH shift of transmitted beam
in the sense of above definition can be much larger than what
is predicted by geometrical optics when the incidence angle
is near the critical angle. Since near the critical angle,g0 is
minimal at klxa=mp, the large GGH shift of transmitted
beam occurs atklxa=mp. Numerical simulations show that
the GGH shift of transmitted beam can also be of the order of
beam’s width.

When the refractive indices of the two prisms are the
same,s0 will vanish according to Eq.(4), so that the GGH
shift of reflected beam will be equal to that of transmitted
beam. This shows that the properties of the reflection GGH
shift do result from the asymmetry of the configuration.

It is worthwhile to point out that in the above discussions
where the angle of incidence is near the critical angle, the
minima of g1

2 at which the GGH shift of reflected beam
reaches its maxima is equal tos1/4ds1−hs/hud2. Therefore
the corresponding reflectanceR=g1

2/g0
2 is not equal to zero.

Readers may notice that apart from this case, there are other
cases in which the power reflectance can be equal to zero and
the corresponding GGH shift of reflected beam seems to tend
to infinity. These happen when 1−hs/hu=0 or hs/hl
−hl /hu=0. In the present asymmetric double-prism configu-

FIG. 3. Dependence of numerically calculated GGH shifts for
reflected TE beams on the thickness of the layer, wherew0=117l is
shown by dashed curve,w0=1170l is shown by dotted curve,u0

=39.2°, and all other parameters are as given in Fig. 2. For com-
parison, the result of theoretical analysis is also shown by solid
curve.
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ration wherenu,ns.nl, these two equations have solutions
only for TM polarization. The solution to the former equa-
tion is nothing but the Brewster angle,

uu = tan−1sns/nud, s9d

for the interface between media of refractive indices ofnu
andns. The solution to the latter equation which can be re-
written as

sin 2uu sin 2us = sin2 2ul s10d

determines another angle of incidence. Ifnu.nl .ns sor
nu,nl ,nsd, the latter equation also has solution for TE po-
larization, which can be rewritten as

tan uu tan us = tan2 ul . s11d

Though at an angle of incidence that satisfies any of Eqs.
(9)–(11) for appropriate polarization, the GGH shift of re-
flected beam has resonant peaks which tend to infinity, these

peaks are physically meaningless, because they are located at
the zero points of power reflectance. At those points, the
reflected beam is very weak and distorted so severely that it
cannot be described in terms of a shifted beam[15]. The
resonant peaks in those situations result from the discontinu-
ity of f1 with respect toky at the zero points ofg1 exps
−if1d. After all, the phase of complex number zero is math-
ematically undefined. In order to make use of such resonant
peaks in the GGH shift, additional mechanisms are needed,
such as the weak absorption[28,29]. Discussions of these
problems will be presented elsewhere.
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